Memory time varying models for weather derivative pricing
نویسندگان
چکیده
We present a generalisation of the double long memory ARFIMA-FIGARCH model introducing time-varying memory coefficients both in the mean and in the variance. The model satisfies the empirical evidence of changing memory observed in average temperature series and can provide useful improvements in the forecasting, simulation and pricing issues related to weather derivatives. We provide an application related to the forecast and simulation of temperature indices used for pricing of weather options.
منابع مشابه
Forecasting Temperature Indices with Time-varying Long-memory Models
The hedging of weather risks has become extremely relevant in recent years, promoting the diffusion of weather derivative contracts. The pricing of such contracts require the development of appropriate models for the prediction of the underlying weather variables. Within this framework, we present a modification of the double long memory ARFIMA-FIGARCH model introducing time-varying memory coef...
متن کاملSeasonal Autoregressive Models for Estimating the Probability of Frost in Rafsanjan
This work develops a statistical model to assess the frost risk in Rafsanjan, one of the largest pistachio production regions in the world. These models can be used to estimate the probability that a frost happens in a given time-period during the year; a frost happens after 10 warm days in the growing season. These probability estimates then can be used for: (1) assessing the agroclimate risk ...
متن کاملStochastic Models for Pricing Weather Derivatives using Constant Risk Premium
‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...
متن کاملTemperature Forecasting in the Concept of Weather Derivatives: A Comparison between Wavelet Networks and Genetic Programming
The purpose of this study is to develop a model that accurately describes the dynamics of the daily average temperature in the context of weather derivatives pricing. More precisely we compare two state of the art algorithms, namely wavelet networks and genetic programming against the classic linear approaches widely using in the contexts of temperature derivative pricing. The accuracy of the v...
متن کاملDensity Forecasting for Weather Derivative Pricing: A Comparison of GARCH and Atmospheric Models
Weather derivatives enable energy companies to protect themselves against weather risk. Weather ensemble predictions are generated from atmospheric models and consist of multiple future scenarios for a weather variable. They can be used to forecast the density of the payoff from a weather derivative. The mean of the density is the fair price of the derivative, and the distribution about the mea...
متن کامل